结构问题主要是由氧化和热烧蚀的过程引起的。当极热的空气接触到高超声速飞行的飞行器或物体金属材料表面时,会产生上述情况。为了解决这个问题,在航空发动机和高超声速飞行器(如火箭,多次使用的航天器和防御导弹)中需要使用超高温陶瓷材料(UHTC)。
但是,当前,甚至传统的UHTC技术还不能满足在极限速度和温度下飞行的相关热烧蚀的要求。曼彻斯特大学和罗伊斯研究所的研究人员与中南大学合作,设计并制造了一种新的碳化物涂层,与现有的UHTC相比,这种涂层可耐高达3000℃的高温,具有非常明显的优势。
来自曼彻斯特大学皇家名誉教授Philip Withers教授表示:“未来的高超声速航空航天飞行器有潜力在交通运输速度上实现阶跃式跨越。一架高超声速飞机有可能在两个小时内从伦敦飞往纽约,这也将彻底改变商务旅客和经常往返两地的乘客的旅途体验。”
“但目前,高超声速飞行器面临的最大挑战之一是如何保护关键零部件,如前缘,燃烧室和机头尖端部位,以便使得这些部位在极端温度条件下,在飞行过程中,能够抵抗严重氧化和强烈空气摩擦带来的热侵蚀。
到目前为止,曼彻斯特大学和中南大学的研究团队开发的碳化物涂层耐热性已经达到常规UHTC(碳化锆ZrC)的12倍。碳化锆是一种非常坚固的耐火陶瓷材料,在商业上广泛用于切削工具的刀头。
这中新型涂料之所以有非常明显的性能提升,主要是由于其独特的涂层结构组成和特性,曼彻斯特大学材料学院对此做了深入的研究,中南大学的粉末冶金学院则成功实现了该材料的生产。这种涂料不仅具有非常好的极限耐热性能,同时还大幅度提升了抗氧化性。
这种涂层材料之所以具有这样独特的优异特性,是因为使用了一种称为“反应熔体渗透法”(RMI)的工艺技术,该技术大大缩短了制备这种材料所需的时间,此外,涂层还经过了碳-碳复合材料进行了增强。这使得这种涂层不仅强度高,同时还对材料表面的消蚀降解具有极强的抵抗力。